Activation of NADPH oxidase by docosahexaenoic acid hydroperoxide and its inhibition by a novel retinal pigment epithelial protein.

نویسندگان

  • G S Wu
  • N A Rao
چکیده

PURPOSE In an earlier study, a novel retinal pigment epithelial protective protein (RPP) was described, which suppresses the superoxide generation of activated polymorphonuclear leukocytes (PMNs). In experimental autoimmune uveitis, docosahexaenoic acid hydroperoxide (22:6OOH) has been shown to be the major lipid peroxidation product in photoreceptors. This hydroperoxide was also found to be chemotactic to PMNs. This study was undertaken to evaluate the activation capability of 22:6OOH in resting PMNs and the possible inhibition of this activation by RPP. METHODS The 22:6OOH was obtained from pure 22:6 and was purified by thin-layer and high-performance liquid chromatography. Intact rabbit peritoneal PMNs (7-8 X 10(5)) were coincubated with 0.5 microM formyl-methionyl-leucyl-phenylalanine (fMLP), 1.3 microM 22:6OOH, or 5.0 microM 22:6. These systems were coincubated with and without 0.25 microg/ml RPP. From PMN cell-free preparations, the reconstitutes each containing 21 microg plasma membranes and 276 microg cytosolic factors were coincubated with arachidonate, 22:6OOH, or 22:6, each at 100 microM. The inhibition of superoxide production was estimated by adding 0.20 microg/ml RPP. Superoxide generation was measured by superoxide dismutase-inhibitable cytochrome C reduction. RESULTS In 30 minutes, 22:6OOH-activated PMNs produced 11.10 +/- 0.68 nanomoles superoxide, and production was suppressed 72% by RPP. Under the same conditions, fMLP induced production of 34.6 +/- 2.77 nanomoles superoxide, and RPP inhibited 60% of production. In the PMN cell-free systems, 100 microM 22:6OOH induced 74.7 nanomoles superoxide per milligram plasma membrane proteins per 5 minutes, and RPP suppressed 50% of production. These results were comparable with those generated by arachidonate, a known stimulator for this system. RPP was effective only when it was added before assembly of reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. CONCLUSIONS The inflammation-mediated retinal peroxidation product 22:6OOH significantly activates resting PMNs, either in intact cells or in cell-free preparations, to increase further the release of superoxide from PMNs, thus accelerating inflammation-mediated tissue damage. This profound amplification process seems to be effectively downregulated by an RPE-generated protein RPP.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neurotrophins induce neuroprotective signaling in the retinal pigment epithelial cell by activating the synthesis of the anti-inflammatory and anti-apoptotic neuroprotectin D1.

The integrity of retinal pigment epithelial cells is critical for photoreceptor cell survival and vision. The essential omega-3 fatty acid, docosahexaenoic acid, attains its highest concentration in the human body in photoreceptors. Docosahexaenoic acid is the essential precursor of neuroprotectin D1 (NPD1). NPD1 acts against apoptosis mediated by A2E, a byproduct of phototransduction that beco...

متن کامل

Aldosterone Induces Oxidative Stress Via NADPH Oxidase and Downregulates the Endothelial NO Synthesase in Human Endothelial Cells

Aldosterone is traditionally viewed as a hormone regulating electrolyte and blood pressure homeostasis. Recent studies suggest that Aldo can cause microvascular damage, oxidative stress and endothelial dysfunction. However, its exact cellular mechanisms remain obscure. This study was undertaken to examine the effect of Aldo on superoxide production in human umbilical artery endothelial cel...

متن کامل

Retinal microglial activation and chemotaxis by docosahexaenoic acid hydroperoxide.

PURPOSE Peroxynitrite generated during the early phase of experimental autoimmune uveoretinitis (EAU) causes peroxidation of docosahexaenoic acid (22:6), a principal unsaturated fatty acid of the photoreceptor membrane, to its hydroperoxide (22:6HP). During this phase, microglia migrate to the site of photoreceptors. The effect of 22:6HP on the migration of isolated retinal microglia was invest...

متن کامل

Neurotrophins enhance retinal pigment epithelial cell survival through neuroprotectin D1 signaling.

Integrity of retinal pigment epithelial cells is necessary for photoreceptor survival and vision. The essential omega-3 fatty acid, docosahexaenoic acid, attains its highest concentration in the human body in photoreceptors and is assumed to be a target for lipid peroxidation during cell damage. We have previously shown, in contrast, that docosahexaenoic acid is also the precursor of neuroprote...

متن کامل

Spironolactone Inhibits NADPH Oxidase-Mediated Oxidative Stress and Dysregulation of the Endothelial NO Synthase in Human Endothelial Cells

Accumulating evidence indicates that aldosterone plays a critical role in the mediation of oxidative stress and vascular damage. NADPH oxidase has been recognized as a major source of oxidative stress in vasculature. However, the relation between NADPH oxidase in aldosterone-mediated oxidative stress in endothelial cells remains to be ascertained. The present study aimed to investigate the rel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Investigative ophthalmology & visual science

دوره 40 5  شماره 

صفحات  -

تاریخ انتشار 1999